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AbslracL The shifted-l/N-expansion method has been used to study the energy leveb 
for a ZD donor impurity in the presence of an arbitrary magnetic field. b c t  analytical 
expmions Cor the energy levels at zero- and high-field limits are obtained. The 
mlculalions are carried out 10 the third-order e o m l i o n  of the shicled-l/Ns;pansion 
energy series. The results appear 10 be in excellent agreement with those of Martin a 
al. 

1. Introduction 

In recent years the problem of two-dimensional (ZD) hydrogenic energy levels in an 
arbitrary magnetic field has received much attention (MacDonald and Ritchie 1986, 
Whittaker and Elliot 1988, Zhu ef a1 19%. Martin and Baker 1991, Larsen and 
McCann 1992, Martin er a1 1992). Work on this problem is motivated by interest 
in quantum well (aw) and multiple-quantum-well (superlattice) systems. The most 
commonly studied semiconductor superlattice consists of regions of GaAs which act 
as wells for the conduction electrons separated by regions of Ga,-,Al,As which act 
as barriers. The magnetic field dependence of the donor levels has been studied hy 
Greene and Bajaj (1985). Experimentally, shallow donor levels have been studied 
by photoluminescence Raman spectroscopy (Shanahrook el af 1984), and by far- 
infrared magnetoabsorption spectroscopy (Jarosik et af 1985), where the magnetic 
field dependence plays a useful role in identifying absorption features. 

Perturbation treatments of this problem can handle the weak- and strong-field 
limits. In the weak-field limit the energy levels are given in an expansion in 
powers of the coupling constant y, while in the strong-field limit the Coulombic 
potential is considered as a perturbative term and the expansion is given in powers 
of I = (n/2~) ’ /~ .  The parameter y is defined as 

y = e2hZB/ce3m” 

where m* is the effective mass and c the dielectric constant of the host (GaAs) 
material. However, such treatments cannot provide information about how the 
energy shifts with the magnetic field in the intermediate range, which is in fact of 
experimental interest in QW systems. Therefore, one has to go through interpolation 
approximations between the weak- and strong-field limits. For example, MacDonald 
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and Ritchie (1986) have used two-point Pad6 approximations, but no regular pattem 
appears and the results become unreliable. Martin et a1 (1992) have used appropriate 
forms of the two-quasi-fractioaal approximation and found better interpolation 
between the two field limits. 

In the absence of highly accurate analytical solutions, even for the simplest case 
of the zD hydrogenic state in a uniform magnetic field, numerical solution of the 
Schrodinger equation could, in prhciple, resolve this issue p u g a n  1988, Whittaker 
and Elliot 1988). 

In this paper the shifted-l/N-expansion method (Imbo el al 1984, Imbo and 
Sukhatme 1985) is introduced to study the ZD hydrogenic donor states in the presence 
of a magnetic field. The method has a non-perturbative character as it is not an 
expansion in powers of a coupling constant. The remarkable success of this method 
has been shown through a large number of potential models of physical interest (Imbo 
et a1 1984, Imbo and Sukhatme 1985, Varshni 1988, Christiansen et al 1989, Mustafa 
and Sever 1991a, b). 

In section 2 we consider a ZD electron gas in the x-y plane in the presence of 
a hydrogenic potential, representing the interaction between the conduction electron 
and the donor impurity centre and an extemal magnetic field of intensity E along the 
growth axis of the heterostructure, i.e. the z axis. This problem is discussed within 
the shifted-1/N-expansion method. In section 3 we give the analytical results for the 
energy at the zero- and high-field limits. We also compare our results with those of 
Martin et a1 (1992). We draw our conclusions in section 4. 

2. The method 

We shall consider the Hamiltonian which describes the Coulomb interaction between 
a conduction electron and a donor impurity centre when a magnetic field is 
applied perpendicular to the z-u plane. If we adopt the symmetric gauge A = 
(B/Z)(-y,x,O), the Hamiltonian is expressed as 

H = -V2 - 2w' /p  + yL, + r2p2/4 (2) 

where w' is introduced for convenience (w' = 0.1). V2 is the two-dimensional 
Laplacian. L, is the angular momentum operator -io/&$ with the eigenvalue m, the 
magnetic quantum number. The units of energy and length are the effective Rydberg 
R' = m'e4/2iaze2, and the effective Bohr radius a* = ia2e/m'e2, respectively. Let 
the two-dimensional Laplacian be transformed to N dimensions (Nieto 1979) and be 
substituted in the Schrodinger equation to obtain 

I[- {d2/dp2 + I(N - l)/pld/dp - I ( [ +  N - 2 ) / p 2 }  + Vb)] R(p) = ER(p)  (3) 

where 

V ( P )  = -2w'/p + my + rzp2/4 (4) 

with m being the magnetic quantum number and 

i= l  
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For N = 2 , q  = p m ~ , x ,  = psi114 and 1 = Iml. The first derivative in 
equation (3) is removed by defining 

R ( p )  = p-(N- l ) /z@(p) .  (6) 
Equation (3), together with equation (6), gives 

[-dz/dp2 + ( E  + a - l)(z+ a - 3)/4pz + V ( P ) ] @ ( P )  = E W )  (7) 

where = N + 21 - a and a is a suitable shift which has the meaning of an additional 
degree of freedom. Invoking now the formal procedure of the shifted-l/N-expansion 
method (see Imbo el a1 (1984) and Mustafa and Sever (1991a,b) and references 
therein), we obtain, from (7), the following results: 

E =  ~ u + ( I / p : ) [ ( l - a ) ( 3 - a ) / 4 + a l l + ~ . 2 / ~ ~ ~  (8) 

E, = V ( p J  + z2/4pt (9) 
0 = 2 - (2n, + l ) w  

w = J3+ PUV"(P")/V'(P,) .  

p, can be determined through the relation 

n, is the radial quantum number, and at and (x2 are given in the appendk 

3. Results and discussion 

Considering equations (8)+2), we have obtained the limiting values of the energy 
at the zero- and high-field h i t s  as 

Edanor = 4% + I 4  + 4r2 

.Ehadru = y(2n, + Iml+ m + 1). 

(13) 

(14) 

and 

It is worthwhile to point out that EdOaor and Eh,,&" are obtained (for comparison 
see Whittaker and Elliot (1988)) by the leading energy term E, where higher-order 
t e r m  vanish identically. 

For donor states in an arbitraly magnetic field, we have numerically solved 
equation (12) through equations (10) and (11) to find the energy eigenvalues 
presented by equation (8). 

Figures 1-3 show the results of the shifted 1 / N  expansion for the ground state 
1s and the excited states 2P- and 3D-. The results show excellent agreement with 
those of Martin er of (1992). However, the only disagreement is noted at the point 
y = y' = 0 for 2B- and 3D- excited states. This disagreement should have arisen 
from using the principal quantum number n (Martin et a1 1992). Thereupon, when 
the magnetic field is applied to a donor impurity, the principal quantum number n is 
no longer a good quantum number. However, the magnetic quantum number m, and 
the radial quantum number np,  retain their meanings and so can be used to follow 
the states from the donor impurity to Landau levels (Whittaker and Elliot 1988). 
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?' = 7/(1+7)  

Flgure 1. The m donor energy versus -(' for the 1s  state: x, mulls of Martin n d 
(1992); - - -, best-fit line of our predictions (0). l.oom 1.50 
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Figure 2. me 20 donor energy vmus y' for the 2P- stale: x, results of Martin a 
d (1992); - - -, best-fit l i e  of OUT predictions (0). 
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Plgure 3. The 20 donor energy versus y' for the 3D- state: x, resul~p of Martin n 
d (1992); - - -, best-fit l i e  of our predictions (U). 
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4. Conclusions 

We have used the shifted-1/N-expansion method to obtain the 2D donor impurity 
states in the presence of an arbitrary magnetic field. The convergence of this method 
is noted to be very fast in the sense that the dominating contribution to the energy is 
the leading term Eo of equation (8). We have obtained exact analytical results for the 
zero- and high-field limits. The method leads to very accurate analytical results and 
its domain of applicability can be extended to include problems of magneto-exciton 
binding energy and others of solid state interest 

Appendix 

Although the following delinitions can be found in many references we would like to 
repeat them so as to make this paper selfcontained: 

a1 = [(I + 2n,)e2 + 3(1+ 2n, + 2n:)e4] 

(*l) 
- w-'[e: + 6(1+ 2n,)ele3 + (11 + 30n, + 30n,)e3] 2 2  

a2 = (1 + 2n,)d2 + 3(1+ Zn, + 2n:)d4 + 5(3 + 8n, + 6n: + 4n:)d6 

- w-'[(I + Znp)e; + 12(1+ 2n, + 2n3e2e4+ 2eld1 

+ 2(21+ 59n, + 51n: + 34n;)e: + 6(1+ 2n,)eld3 

+30( 1+2n,+ 2n:)elds +6( 1+2n,)e3d1 +2( 11 +30n,+30n:)e3d, 

+ 10( 13+40n,+42n:+28n;)e3dS] + w-*[4efe2+36( 1+2n,)el%e3 

+8( 11+30n,+30n:)e2e:+24( 1+n,)e:e4+8(31+78np+78n;)eIe3e4 

+ 12(57+ 189n,+225n;+150n;)e:e4] - ~ - ~ [ 8 e ; e ~ +  108( 1+2np)e:e: 

+ 48(11+ 30n, + 30n:)ele: + 30(31+ 109n, + 141~x2, + 94n;)e$ 

('w 
with 

e .  J I  = e . /wj l2  di = 6,/wi12 (W 
where j = 1,2,3,4, and i = 1,2,3,4,5,6. 

The definitions of e j -  and 6i-values are 

cl = (2 - a )  ('44) 

€3 = -1 + p:VN'(p,)/6Q E+ = + p~V""(pU)/24Q (A-7 

63 = 2(2 - a )  64 = -5(2- a)/2 (A7) 

et = -3(2 - a)/2 

6, = - ( 1 - ~ ) ( 3 - ~ ) / 2  a2=3(1-a)(3-u)/4 

65 = -$ + p~V""'(p~)/l20Q 66 = 3 + p~V"""(pg)/720Q. (A8) 
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